Hurwitz components of groups with socle PSL(3, q)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost simple groups with Socle $G_2(q)$ acting on finite linear spaces

 After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.

متن کامل

Maximal subgroups of almost simple groups with socle PSL(2, q)

We determine all maximal subgroups of the almost simple groups with socle T = PSL(2, q), that is, of all groups G such that PSL(2, q) 6 G 6 PΓL(2, q), with q ≥ 4.

متن کامل

Almost simple groups with socle Ln(q) acting on Steiner quadruple systems

Let N = Ln(q), n ≥ 2, q a prime power, be a projective linear simple group. We classify all Steiner quadruple systems admitting a group G with N ≤ G ≤ Aut(N). In particular, we show that G cannot act as a group of automorphisms on any Steiner quadruple system for n > 2.

متن کامل

almost simple groups with socle $g_2(q)$ acting on finite linear spaces

after the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. in this article, we present a partial classification of the finite linear spaces $mathcal s$ on which an almost simple group $g$ with the socle $g_2(q)$ acts line-transitively.

متن کامل

Hurwitz Groups and Surfaces

Hurwitz not only gave an upper bound for the number of automorphisms of a compact Riemann surface of genus greater than 2, but also gave a characterization of which finite groups could be groups of automorphisms achieving this bound. In practice, however, the identification of such groups and of the surfaces they act on is difficult except in special cases. We survey what is known. 1. How I Got...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Extracta Mathematicae

سال: 2021

ISSN: 2605-5686,0213-8743

DOI: 10.17398/2605-5686.36.1.51