Hurwitz components of groups with socle PSL(3, q)
نویسندگان
چکیده
منابع مشابه
Almost simple groups with Socle $G_2(q)$ acting on finite linear spaces
After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.
متن کاملMaximal subgroups of almost simple groups with socle PSL(2, q)
We determine all maximal subgroups of the almost simple groups with socle T = PSL(2, q), that is, of all groups G such that PSL(2, q) 6 G 6 PΓL(2, q), with q ≥ 4.
متن کاملAlmost simple groups with socle Ln(q) acting on Steiner quadruple systems
Let N = Ln(q), n ≥ 2, q a prime power, be a projective linear simple group. We classify all Steiner quadruple systems admitting a group G with N ≤ G ≤ Aut(N). In particular, we show that G cannot act as a group of automorphisms on any Steiner quadruple system for n > 2.
متن کاملalmost simple groups with socle $g_2(q)$ acting on finite linear spaces
after the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. in this article, we present a partial classification of the finite linear spaces $mathcal s$ on which an almost simple group $g$ with the socle $g_2(q)$ acts line-transitively.
متن کاملHurwitz Groups and Surfaces
Hurwitz not only gave an upper bound for the number of automorphisms of a compact Riemann surface of genus greater than 2, but also gave a characterization of which finite groups could be groups of automorphisms achieving this bound. In practice, however, the identification of such groups and of the surfaces they act on is difficult except in special cases. We survey what is known. 1. How I Got...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Extracta Mathematicae
سال: 2021
ISSN: 2605-5686,0213-8743
DOI: 10.17398/2605-5686.36.1.51